Februari 15, 2012

SENSES (Panca Indra)


human body (senses)


Human beings have a multitude of senses. In addition to the traditionally recognized five senses of sight (ophthalmoception), hearing (audioception), taste (gustaoception), smell (olfacoception or olfacception), and touch (tactioception), other senses include temperature (thermoception), kinesthetic sense (proprioception), pain (nociception), balance (equilibrioception) and acceleration (kinesthesioception).

Sight
            Sight or vision is the ability of the eye(s) to focus and detect images of visible light on photoreceptors in the retina of each eye that generates electrical nerve impulses for varying colors, hues, and brightness. There are two types of photoreceptors: rods and cones. Rods are very sensitive to light, but do not distinguish colors. Cones distinguish colors, but are less sensitive to dim light. There is some disagreement as to whether this constitutes one, two or three senses. Neuroanatomists generally regard it as two senses, given that different receptors are responsible for the perception of color and brightness. Some argue[citation needed] that stereopsis, the perception of depth using both eyes, also constitutes a sense, but it is generally regarded as a cognitive (that is, post-sensory) function of the visual cortex of the brain where patterns and objects in images are recognized and interpreted based on previously learned information, This is called visual memory. The inability to see is called blindness.
Blindness may result from damage to the eyeball, especially to the retina, damage to the optic nerve that connects each eye to the brain, and/or from stroke (infarcts in the brain). Temporary or permanent blindness can be caused by poisons or medications.
Hearing
            Hearing or audition is the sense of sound perception. Hearing is all about vibration. Mechanoreceptors turn motion into electrical nerve pulses, which are located in the inner ear. Since sound is vibrations propagating through a medium such as air, the detection of these vibrations, that is the sense of the hearing, is a mechanical sense because these vibrations are mechanically conducted from the eardrum through a series of tiny bones to hair-like fibers in the inner ear, which detect mechanical motion of the fibers within a range of about 20 to 20,000 hertz, with substantial variation between individuals. Hearing at high frequencies declines with an increase in age. Inability to hear is called deafness. Sound can also be detected as vibrations conducted through the body by tactition. Lower frequencies than can be heard are detected this way.
Taste
Taste (or, the more formal term, gustation; adjectival form: "gustatory") is one of the traditional five senses. It refers to the ability to detect the flavor of substances such as food, certain minerals, and poisons, etc. Humans receive tastes through sensory organs called taste buds, or gustatory calyculi, concentrated on the upper surface of the tongue. The sensation of taste can be categorized into five basic tastes: sweetness, bitterness, sourness, saltiness and umami. Other tastes such as calcium and free fatty acids may be other basic tastes but have yet to receive widespread acceptance. The recognition and awareness of umami is a relatively recent development in Western cuisine. MSG produces a strong umami taste so much so that it is said to taste soapy by itself.
Smell
            Smell or olfaction is the other "chemical" sense. Unlike taste, there are hundreds of olfactory receptors (388 according to one source) each binding to a particular molecular feature. Odor molecules possess a variety of features and, thus, excite specific receptors more or less strongly. This combination of excitatory signals from different receptors makes up what we perceive as the molecule's smell. In the brain, olfaction is processed by the olfactory system. Olfactory receptor neurons in the nose differ from most other neurons in that they die and regenerate on a regular basis. The inability to smell is called anosmia. Some neurons in the nose are specialized to detect pheromones.
Touch
            Touch or somatosensory, also called tactition or mechanoreception, is a perception resulting from activation of neural receptors, generally in the skin including hair follicles, but also in the tongue, throat, and mucosa. A variety of pressure receptors respond to variations in pressure (firm, brushing, sustained, etc.). The touch sense of itching caused by insect bites or allergies involves special itch-specific neurons in the skin and spinal cord. The loss or impairment of the ability to feel anything touched is called tactile anesthesia. Paresthesia is a sensation of tingling, pricking, or numbness of the skin that may result from nerve damage and may be permanent or temporary.


Balance and acceleration
            Balance, equilibrioception, or vestibular sense is the sense that allows an organism to sense body movement, direction, and acceleration, and to attain and maintain postural equilibrium and balance. The organ of equilibrioception is the vestibular labyrinthine system found in both of the inner ears. In technical terms, this organ is responsible for two senses of angular momentum acceleration and linear acceleration (which also senses gravity), but they are known together as equilibrioception.

The vestibular nerve conducts information from sensory receptors in three ampulla that sense motion of fluid in three semicircular canals caused by three-dimensional rotation of the head. The vestibular nerve also conducts information from the utricle and the saccule, which contain hair-like sensory receptors that bend under the weight of otoliths (which are small crystals of calcium carbonate) that provide the inertia needed to detect head rotation, linear acceleration, and the direction of gravitational force.
Temperature
            Thermoception is the sense of heat and the absence of heat (cold) by the skin and including internal skin passages, or, rather, the heat flux (the rate of heat flow) in these areas. There are specialized receptors for cold (declining temperature) and to heat. The cold receptors play an important part in the dog's sense of smell, telling wind direction. The heat receptors are sensitive to infrared radiation and can occur in specialized organs for instance in pit vipers. The thermoceptors in the skin are quite different from the homeostatic thermoceptors in the brain (hypothalamus), which provide feedback on internal body temperature.
Kinesthetic sense
          Proprioception, the kinesthetic sense, provides the parietal cortex of the brain with information on the relative positions of the parts of the body. Neurologists test this sense by telling patients to close their eyes and touch their own nose with the tip of a finger. Assuming proper proprioceptive function, at no time will the person lose awareness of where the hand actually is, even though it is not being detected by any of the other senses. Proprioception and touch are related in subtle ways, and their impairment results in surprising and deep deficits in perception and action.


Pain
            Nociception (physiological pain) signals nerve-damage or damage to tissue. The three types of pain receptors are cutaneous (skin), somatic (joints and bones), and visceral (body organs). It was previously believed that pain was simply the overloading of pressure receptors, but research in the first half of the 20th century indicated that pain is a distinct phenomenon that intertwines with all of the other senses, including touch. Pain was once considered an entirely subjective experience, but recent studies show that pain is registered in the anterior cingulate gyrus of the brain. The main function of pain is to warn us about dangers. For example, humans avoid touching a sharp needle or hot object or extending an arm beyond a safe limit because it hurts, and thus is dangerous. Without pain, people could do many dangerous things without realizing it.

Other internal senses
            An internal sense or interoception is "any sense that is normally stimulated from within the body".  These involve numerous sensory receptors in internal organs, such as stretch receptors that are neurologically linked to the brain.
Ø  Pulmonary stretch receptors are found in the lungs and control the respiratory rate.
Ø  Peripheral chemoreceptors in the brain monitor the carbon dioxide and oxygen levels in the brain to give a feeling of suffocation if carbon dioxide levels get too high.
Ø  The chemoreceptor trigger zone is an area of the medulla in the brain that receives inputs from blood-borne drugs or hormones, and communicates with the vomiting center.
Ø  Chemoreceptors in the circulatory system also measure salt levels and prompt thirst if they get too high (they can also respond to high sugar levels in diabetics).
Ø  Cutaneous receptors in the skin not only respond to touch, pressure, and temperature, but also respond to vasodilation in the skin such as blushing.
Ø  Stretch receptors in the gastrointestinal tract sense gas distension that may result in colic pain.
Ø  Stimulation of sensory receptors in the esophagus result in sensations felt in the throat when swallowing, vomiting, or during acid reflux.
Ø  Sensory receptors in pharynx mucosa, similar to touch receptors in the skin, sense foreign objects such as food that may result in a gag reflex and corresponding gagging sensation.
Ø  Stimulation of sensory receptors in the urinary bladder and rectum may result in sensations of fullness.
Ø  Stimulation of stretch sensors that sense dilation of various blood vessels may result in pain, for example headache caused by vasodilation of brain arteries.

Tidak ada komentar:

Posting Komentar